\qquad Date \qquad
\qquad

Balancing Equations and Simple Stoichiometry

Balance the following equations:

1) \qquad $\mathrm{N}_{2}+\ldots \mathrm{F}_{2} \rightarrow$ \qquad NF_{3}
2) \qquad $\mathrm{C}_{6} \mathrm{H}_{10}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{CO}_{2}+$ \qquad $\mathrm{H}_{2} \mathrm{O}$
3) \qquad $\mathrm{HBr}+$ \qquad $\mathrm{KHCO}_{3} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}+$ \qquad $\mathrm{KBr}+$ \qquad CO_{2}
4) \qquad $\mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow$ \qquad $\mathrm{Ga}_{2}\left(\mathrm{SO}_{3}\right)_{3}+$ \qquad NaBr
5) \qquad $\mathrm{SnO}+$ \qquad $\mathrm{NF}_{3} \rightarrow$ \qquad $\mathrm{SnF}_{2}+$ \qquad $\mathrm{N}_{2} \mathrm{O}_{3}$

Using the equation from problem 2 above, answer the following questions:
6) If I do this reaction with 35 grams of $\mathrm{C}_{6} \mathrm{H}_{10}$ and 45 grams of oxygen, how many grams of carbon dioxide will be formed?
7) What is the limiting reagent for problem 6 ? \qquad
8) How much of the excess reagent is left over after the reaction from problem 6 is finished?
9) If 35 grams of carbon dioxide are actually formed from the reaction in problem 6, what is the percent yield of this reaction?
\qquad Date \qquad
\qquad

Balancing Equations and Simple Stoichiometry

Balance the following equations:

1) $1 \mathrm{~N}_{2}+3 \mathrm{~F}_{2}=2 \mathrm{NF}_{3}$
2) $2 \mathrm{C}_{6} \mathrm{H}_{10}+17 \mathrm{O}_{2}=12 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
3) $1 \mathrm{HBr}+1 \mathrm{KHCO}_{3} \approx 1 \mathrm{H}_{2} \mathrm{O}+1 \mathrm{KBr}+1 \mathrm{CO}_{2}$
4) $2 \mathrm{GaBr}_{3}+3 \mathrm{Na}_{2} \mathrm{SO}_{3}=1 \mathrm{Ga}_{2}\left(\mathrm{SO}_{3}\right)_{3}+6 \mathrm{NaBr}$
5) $3 \mathrm{SnO}+2 \mathrm{NF}_{3}>3 \mathrm{SnF}_{2}+1 \mathrm{~N}_{2} \mathrm{O}_{3}$

Using the equation from problem 2 above, answer the following questions:
6) If I do this reaction with 35 grams of $\mathrm{C}_{6} \mathrm{H}_{10}$ and 45 grams of oxygen, how many grams of carbon dioxide will be formed?
When you do this calculation for 35 grams of $\mathrm{C}_{6} \mathrm{H}_{10}$, you find that 113 grams of CO_{2} will be formed. When you do the calculation for 45 grams of oxygen, you find that 43.7 grams of CO_{2} will be formed. Because 43.7 grams is the smaller number, oxygen is the limiting reagent, forming 43.7 grams of product.
7) What is the limiting reagent for problem 6 ? oxygen
8) How much of the excess reagent is left over after the reaction from problem 6 is finished?
21.5 grams of $\mathrm{C}_{6} \mathrm{H}_{10}$ will be left over.
9) If 35 grams of carbon dioxide are actually formed from the reaction in problem 6, what is the percent yield of this reaction?
80.1\%

