\qquad
\qquad
\qquad

5.1 Percent Composition (S) \& 5.2 Molecular \& Empirical Formulas (S) Notes

I have a crate with 30 lb of bowling balls and 20 lb of marbles (total of \qquad lb).

Are there more marbles or bowling balls?

By Mass
By Number

I have a substance of 69.9% iron and 30.1% oxygen.

This answer is called the \qquad formula.
Definition: ratio of atoms in a compound in simplest form.

Finding Empirical Formula from Percent Composition
Example:
Carbon $=60.0 \%$
Hydrogen = 13.4\%
Oxygen $=26.6 \%$

1) Change percentages to \qquad .
2) Convert \qquad to \qquad .
3) Write as an empirical formula and divide by the
\qquad
\qquad .
4) If necessary, multiply to make everything a
\qquad .
\qquad
\qquad Period \qquad

Molecular Formula

Example (see pg 244):

Compound	Empirical Formula	Molecular Formula	Molar Mass

The important thing to know is the \qquad .

Finding Molecular Formula from the Empirical Formula:

1) Find the \qquad of the empirical formula.
2) Find out how many times the molar mass of the empirical formula goes into the molar mass of the compound (divide).
3) Multiply that number by the empirical formula.

Practice/HW:

Example:
Empirical Formula $=\mathrm{P}_{2} \mathrm{O}_{5}$
Molar Mass of Compound $=284 \mathrm{~g} / \mathrm{mol}$

Finding Percent Composition from the Molecular Formula:
Example:
Find percent composition of CO_{2}

1) Convert \qquad to \qquad for each element.
2) Divide each by the total molar mass.

Practice/HW:

