Name	Date
Name	Dale

3.2 Logarithmic Functions Take Home Notes

Intro #1

Question: What's the inverse of an exponential function?

Graph $f(x) = 2^x$ and sketch what its inverse should *look* like:

Reminder Box
Inverses graphically are

Intro #2

Math Problem	Question	Math Answer	Procedure
2 + x = 5	Two plus what equals five?		
$3 \cdot x = 39$	Three times what equals 39?		
$x^3 = 27$	What cubed equals 27?		
$2^x = 512$	Two to the what equals 512?		

The answer to both #1 and #2 are ______.

Specific Examples

Logarithmic Form

Exponential Form

General Example

Logarithmic Form

Exponential Form

Practice

Logarithm	In English	Evaluate
$log_2 8$		
$log_3\frac{1}{9}$		
log ₁₀ 10,000		
log_4 16		
log_44		
log_42		
log_4 1		
log_44^3		
log_44^{15}		
log ₇ 7 ¹²		

Graphs of Logarithmic Functions

